Assessment of the Regional Climate Model Version 3 over the Maritime Continent Using Different Cumulus Parameterization and Land Surface Schemes
نویسندگان
چکیده
This paper describes an assessment of the Regional Climate Model, version 3 (RegCM3), coupled to two land surface schemes: the Biosphere–Atmosphere Transfer System, version 1e (BATS1e), and the Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation over the Maritime Continent was evaluated against the 3-hourly Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product. It is found that the model suffers from three major errors in reproducing the observed rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low-intensity rainfall, and underestimation of the frequency of high-intensity rainfall. Additionally, the model does not accurately reproduce the observed timing of the diurnal rainfall peak, particularly over land. These four errors persisted regardless of the choice of lateral boundary conditions, convective parameterization scheme, or land surface scheme. The magnitude of the wet–dry bias in the simulated volumes of rainfall was, however, strongly dependent on the choice of the convection scheme and lateral boundary conditions. The Grell convection scheme with Fritsch–Chappell closure was the best performing of the convection schemes, having the smallest error magnitudes in both the rainfall histogram and average diurnal cycle, and also having good representation of the land surface energy and evapotranspiration components. The 40-yr ECMWF Re-Analysis (ERA-40) was found to produce better simulations of observed rainfall when used as lateral boundary conditions than did the NCEP–NCAR reanalysis. Discussion of the nature of the major model errors is provided, along with some suggestions for improvement.
منابع مشابه
Regional Climate Modeling over the Maritime Continent. Part II: New Parameterization for Autoconversion of Convective Rainfall
This paper describes a new method for parameterizing the conversion of convective cloud liquid water to rainfall (‘‘autoconversion’’) that can be used within large-scale climatemodels, and evaluates the newmethod using the Regional Climate Model, version 3 (RegCM3), coupled to the land surface scheme Integrated Biosphere Simulator (IBIS). The new method is derived from observed distributions of...
متن کاملThe NASA-Goddard Multi-scale Modeling FrameworkeLand Information System: Global land/atmosphere interaction with resolved convection
The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has thre...
متن کاملThe NASA-Goddard Multi-scale Modeling Framework-Land Information System: Global land/atmosphere interaction with resolved convection
The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has thre...
متن کاملAn Assessment of Wind Erosion Schemes in Dust Emission Simulations over the Middle East
Extended abstract 1- INTRODUCTION Atmospheric aerosols, solid and liquid particles in the atmosphere, play a crucial role in the atmospheric radiation equilibrium. These particles have an influence on the scattering and absorption of short wavelength radiation, and on the other hand, affect radiation absorption and emission in long wavelengths. Dust particles are among the importan...
متن کاملSensitivity Analysis of Different Convection Schemes and Center Domains for Numerical Simulation of Winter Precipitation Over Iran
This paper qualifies the effect of different convection schemes and center-domains on the simulation of winter precipitation over Iran using RegCM3 numerical climate model. It is compressible, finite difference with hydrostatic equilibrium in sigma coordinate with a semi-implicit algorithm for reduction of horizontal diffusion. Iran experienced two dry and wet periods during winters of 1997 and...
متن کامل